JWST Master Class Workshop **NIRSpec Slit and MOS** mode: an introduction Elena Puga on behalf of the ESA JWST Science Operations team

ANASTER CLASS

Fixed Slits

NIRSpec: Hardware

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

So MASTER CLAS

Direction of Dispersion

3

NIRSpec FS Basics and Design

FIXED SLIT	Single (compact) object	0.2′′ x 3.2′′ sl
SPECTROSCOPY	(high contrast)	0.4′′ x 3.65′′ s
		1.6" x 1.6" ap
BRIGHT OBJECT	e.g. Transit/eclipse	1.6′′ x 1.6′′ ap
TIME SERIES	spectroscopy	

Six gratings and one prism available as dispersers (full wavelength range)

1 µm	2 µm	3 µm	4 µm

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

its (3)

slit

perture

perture

5.27 μm

S200A2

S200A1

4

NIRSpec FS Basics and Design

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

5

NIRSpec FS "stripy-ness"

- The S200 and S400A1 slits have width variations of up to 20% (P-V)
- Expected to mostly flat field out
- Nodding positions are defined to avoid the narrower slit regions (valleys) where possible
- Slit losses (for point sources) will be calibrated at the defined nod/ dither positions

NIRSpec FS: Sensitivity

PS, 18 ABmag, 300s

7

The Micro Shutter Assembly (MSA)

- 4 arrays of 365x171 micro-shutters
- 250,000 individually addressable shutters
- 3.6'x3.4' field-of-view ~ 9 arcmin²
- Each shutter 0.20" × 0.46" (width in the dispersion direction × height)

Example MOS data - Testing

MSA configuration - Testing

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

Regular pattern of open micro-shutters used with flatfield illumination: Easy ③

What about the planning of a real observation?

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

What are the considerations of such a plan? What does the observer need to know?

The MSA is not an 'ideal' grid - I

Failed Closed Shutter

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

Q2

Q1

Shorted rows/columns - also closed!

The MSA is not an 'ideal' grid - II

- Dispersed light falling on a failedopen shutter can contaminate spectrum of target
- Closed shutter are nor perfectly opaque
- The status of failed open/failed closed shutters can evolve

The MSA is a fixed grid

- Shutter bars vignette light from an extended sources
- Gap between the 2 detectors that leads to a gap in wavelength coverage
- In general sources will not be centered in the aperture
- Positioning sources in MSA require knowledge of optical distortions/ velocity aberrations

Spectra on the detector have different length: PRISM

Spectra on the detector have different length: G395H

Multiplexing levels (optimal planning – real MSA)

PRISM: With catalog source densities greater than ~600 sources/arcmin² → typically ~180 to 200 sources can be observed simultaneously.

Gratings: With catalog source densities greater than ~200 sources/arcmin² → typically ~65 to 70 sources.

Which are the observational parameters that influence the multiplexing levels & drive the planning of a MOS observation?

The answer: MSA Planning Tool (MPT)

See also presentation : Available Proposal Tools

France JWST Master Class Workshop, 24-25 Feb 2020, Paris

	What's New 🌚 Roadmap 🖓 Feed
ner's Prope	Sal Tools
	111211112010000 2 025
Government as represented by itics and Space Administration	the
din Sky Atlas (http://aladin.u- stronomiques de S trasbourg (C	strasbg.fr/) CDS -
BAD database, operated at CD	s,
SA/IPAC Extragalactic Databas pulsion Laboratory, der contract with the National	e
y library which is maintained	

TV